Game Dev Blog & Tutorials

Toon Glass Shader Breakdown


This shader produces a toon glass effect, which involves solid diagonal lines across the quad’s surface which move with the camera’s position. This is similar to how glass and window reflections are sometimes portrayed in cartoons/comics/clipart etc.

(Note : This blog post uses a different version than in the original tweet above, but the result is very similar)




Before we begin the graph, I’m going to define a bunch of properties. Make sure you are using the same default values as the previews may look different otherwise. You can define these properties in the Blackboard, press the “+” icon, choose the type and then right-click to rename the property. Click on the small arrow next to each property name to change their settings, such as the default value. (Note : In newer versions this moved to the Shader Graph “Inspector” window).

Note that in the material’s inspector, I’m using an Offset of 1 and a Scale Multiplier of 0.3. These values won’t look good in the shadergraph previews though!

I also haven’t named the “A” and “B” properties very well, but they both control the number of diagonal lines produced by the shader. However A also affects how small the lines are in the center while B is more linear. The line count (per side) is equal to A*B. For best results, B should remain an integer. A doesn’t have to be an integer, but A*B should be. So, A=2.5 and B=2 is fine, for 5 lines per side. A=5 and B=1 would also give 5 lines per side, but the width of the lines would be different.


First we create a Position node set to Absolute World space, and Subtract the camera’s position (in world space, via the Position output on the Camera node) to obtain the position relative to the camera. The origin of the effect will now be at the camera’s position so it will move as the camera moves (in terms of translation, not rotation).

We can then Transform to Tangent space, which appears to make the position relative to the meshes’ surface – kind of? Well, at least for our purposes the R/X component of the position is horizontal across the surface, and G/Y is vertical, but there may be better ways of handling this.

Note : This is now broken as the Transform node normalises the Tangent space output which we don’t want here. You can instead use a Matrix Construction node with the Tangent Vector, Bitangent Vector and Normal Vector nodes connected (in that order, each in Absolute World space) and Multiply to handle matrix multiplication. Alternatively, just use the UV or Position in Object space but it will stretch when the GameObject is scaled.

We can Split to obtain these components, and Add them together to make a diagonal gradient. An Absolute function will then convert any negative values to positive. Any changes made will now be mirrored across the diagonal line as both sides share the same values.

The preview on our Absolute node doesn’t seem to look right though. This is due to the transform to tangent space, but even if we were to change it, the preview will still show the “3D” circular version. Instead, we can create a UV node and put it into a Remap node with values of 0 and 1 for the In Min Max and -1 and 1 for the Out Min Max. This remaps the values so the value at the center of the preview has a value of 0. When we connect this to the Split we can visualise the previews properly which will help a lot when creating the rest of the graph, then at the end we can reconnect the other position instead.

(In v10.3+ you can now set the Preview to 2D using the Node Settings tab of the Graph Inspector)


We now have two gradients going outwards diagonally in each direction. There are values of 0 in the center shown by the black areas on the preview. If we Subtract a value from this it will shift the values inwards, and output negative values in the center (which we can remove later via a Saturate). This results in creating a spacing between the two gradients. Here we use the Offset property, which will allow us to change the spacing later in the inspector. We can then also apply some scaling by using a Multiply with the Scale Multiplier property, as shown on the left below.


To handle creating multiple lines, I’m using this setup as shown above. By using a Power in our calculations, we can allow the values to be more exponential / less linear. This affects the width of each line based on the distance from the diagonal, as shown in the Fraction node preview. To better show how this works, I’ve plotted the functions here :


(Source : Wolfram|Alpha, Wolfram Alpha LLC, Date : 01/01/2020, Links : Plot1, Plot2)

Both plots show the “A” property set to 0 to 4 and “B” set to 1. Note that the input on the Power is A+1.01, which I’ve rounded to A+1, therefore the plots show 2^x to 5^x as labelled.

Looking at the plot on the left, When A is higher, the plot results in a more curved line.

More importantly though, the Fraction node (a.k.a frac function) returns the fractional (decimal) part of the number (without the integer component). This results in values only between 0 and 1 which is shown by the plot on the right. The line jumps from 1 back to 0 on the Y axis. The higher A values produce more line sections, and each line further to the right on the X axis gets smaller (takes up less horizontal space). It’s a bit of a mess but easier to see if you focus only on the green line.

We use a One Minus node on our second input on the Power, so that we input values near 1 on diagonal line rather than 0, resulting in smaller width gradients rather than larger. There’s also a Saturate in place which clamps values between 0 and 1. The extra .01 on the Add node is in place to prevent the Fraction node outputting 1 in the center (the spacing created by the Offset) for certain integer values of A, although it can still occur if B or A*B isn’t an integer, hence the mention of setting these to integers at the start of the breakdown. We could instead mask that area to always be black, but it felt a bit unnecessary.

Hopefully those plots help explain what is going on here, as the maths might not be easy to grasp by looking at the nodes alone. All we need to do now is Step the gradient-like result from the Fraction node, using the Line Width property to obtain solid lines which we can then Multiply by our Line Alpha. We also need to Add the Color property’s alpha, to control the glass’ surface alpha, then put this into the Alpha input on the Master node, and also set the Color input as shown.

Also don’t forget to connect the (camera relative & tangent) position rather than the UVs at the beginning when saving the graph, as the UVs were only there for better previews while editing!


Thanks for reading!

If this post helped, consider sharing a link with others!

License / Usage Cookies & Privacy RSS Feed